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3.1 Abstract 

The synthesis of glucose esters with palmitic acid, lauric acid and hexanoic acid using 

lipase enzyme were studied and their emulsion functionality in oil-in-water system were 

compared. Reactions at 3:1 molar ratio of fatty acids-to-glucose had the highest conversion 

percentages (over 90% for each of the fatty acid). Initial conversion rate increased as substrate 

solubility increased. Ester bond formation was confirmed by nuclear magnetic resonance 

technique that the chemical shifts of glucose H-6 and α-carbon proton of fatty acid in the esters 

shifted to the higher fields. Contact angle of water on esters’ pelleted surface increased as the 

hydrophobicity increased. Glucose esters’ and commercial sucrose esters’ functionality as 

emulsifiers were compared. Glucose esters delayed, but did not prevent coalescence, because the 

oil droplets diameter doubled during 7 days. Sucrose esters prevented coalescence during 7 days 

since the droplets diameter did not have significant change.  

Key words: glucose ester; synthesis; lipase; contact angel; emulsifier; sucrose ester.  

3.2. Introduction 

Surfactants are amphiphilic molecules with both hydrophilic and hydrophobic moieties 

that can adsorb at the interface between different polarity phases and reduce interfacial tension. 

Thus, they have functionality in detergency, emulsifying, dispersion, foaming industry (Greek, 

1991, 1990). Traditional surfactants are mainly derived from petroleum industry products, which 

requires unfavorable reaction conditions such as high temperature, high acidity, alkalinity , 

organic solvent, and have low biodegradability and high aquatic toxicity (Deleu & Paquot, 

2004). However, surfactants can also be produced via enzymatic reactions or microbial 

fermentation utilizing biological feedstocks. These environmental compatible surfactants, also 

called biobased surfactants, are biodegradable and environmental friendly. Some of the 
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microorganisms that produce surfactants during fermentation are Pseudomonas, Rhodococcus, 

Mycobacterium, Toruplopsis, Bacillus, Thiobacillus, etc  (Desai & Banat, 1997). The surfactants 

derived from microorganisms are glycolipid, lipopeptides, lipoproteins, fatty acids and 

phospholipids, etc (Desai & Bannat 1997).  In enzyme-catalyzed production of biobased 

surfactants, the common enzymes utilized are lipase, proteinase and glucosidase (Hayes, 2011). 

Lipase catalyzes ester bond formation between fatty acyl groups and hydroxyl group of alcohols 

or polyols; amino acid also can act as acyl donor and form ester or amide bond if proteinase are 

used; glycosidases catalyze the acetal bond formation between saccharides and fatty alcohols 

(Van Rantwijk, Woudenberg-van Oosterom, & Sheldon, 1999). Lipase-catalyzed reactions were 

studied in terms of reaction solvent, substrate ratio, reaction time etc. Commonly used acyl 

acceptors are carbohydrate, sugar alcohol. Acyl donors are various fatty acids or fatty acid esters. 

Enzymatic synthesis of esters is one of the major methods due to the higher selectivity, relatively 

lower temperatures (lower than 70°C), lower solvent toxicity, and easier separation of products. 

Enzyme that have been used for synthesis of esters are subtilisin from Bacillus amyloliquefaciens 

(Rich, Bedell, & Dordick, 1995), lipase from Candida antarctica (Pedersen, Wimmer, 

Emmersen, Degn, & Pedersen, 2002), Candida rugosa (Zaidan, Abdul Rahman, Othman, Basri, 

Abdulmalek, Abdul Rahman, et al., 2012) Mucor miehei (Degn, Pedersen, & Zimmermann, 

1999), Humicola lanuginose (Ferrer, Cruces, Bernabe, Ballesteros, & Plou, 1999), Thermomyces 

lanuginosus (Tsavas, Polydorou, Faflia, Voutsas, Tassios, Flores, et al., 2002), and alkaline 

protease from Streptomyces spp (Kitagawa, Tokiwa, Fan, Raku, & Tokiwa, 2000).  Sugar- fatty 

acid esters are non-ionic surfactants with a wide range of hydrophilic-lipophilic balance (HLB) 

values. Since they are biodegradable, non-toxic (Ferrer, Cruces, Bernabe, Ballesteros, & Plou, 

1999), non-irritant to skin (Plat & Linhardt, 2001) and odorless, they are widely used in food, 
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pharmaceutical, cosmetic and detergent industries. Sucrose esters have been approved by Food 

and Drug Administration and are widely used in food industry, such as wheat products, 

confectioneries, and dairy products, etc. The functions are various, such as increasing dough 

resistance to kneading, increasing cake volume, prevent stickiness to the machine, make stable 

emulsion, improve mouthfeel, prevent staling, etc. (Mitsubishi-Kagaku Food Corporation, 

http://www.mfc.co.jp/english/infor.htm).   

The challenge to synthesize sugar-fatty acid ester enzymatically is to find good solvent(s) 

to solubilize the substrates that have different polarities, at the meantime, not deactivating 

enzymes. It has been extensively studied in different medium, for example, single phase organic 

solvent systems (Degn, Pedersen, & Zimmermann, 1999; Ljunger, Adlercreutz, & Mattiasson, 

1994;), two organic solvent systems (Kitagawa, Tokiwa, Fan, Raku, & Tokiwa, 2000; Reyes-

Duarte, López-Cortés, Ferrer, Plou, & Ballesteros, 2005), non-solvent systems (Martin-Arjol, 

Isbell, & Manresa, 2015), ionic liquid systems, supercritical carbon dioxide (Habulin, Šabeder, & 

Knez, 2008) and deep eutectic systems (Pohnlein, Ulrich, Kirschhofer, Nusser, Muhle-Goll, 

Kannengiesser, et al., 2015). Mixed organic solvents were preferred than single solvent since by 

varying the ratio of each solvents, solubility of acyl acceptor and enzyme activity can be 

controlled. To avoid the use of organic solvent and address the solubility issues, solvent-free 

system were used (Fregapane, Sarney, & Vulfson, 1991; Ward, Fang, & Li, 1997). However, the 

reaction system had high viscosity and low miscibility (Wei, Yu, Song, & Su, 2003). Ionic 

solvents were used because of their advantage of low vapor pressures and tunable chemical 

structure that can solubilize different substrates (Park & Kazlauskas, 2001)  while they have 

disadvantage of extra steps to synthesize and purify of ionic solvents, and some ionic liquid were 

reported to deactivate the enzyme (Schöfer, Kaftzik, Wasserscheid, & Kragl, 2001). Dimethyl 

http://www.mfc.co.jp/english/infor.htm
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sulfoxide (DMSO) and 2-methyl-2-butanol (2M2B) were chosen as reaction media to synthesize 

glucose esters due to relatively high solubility of sugars and being benign to enzymes. 

Although the synthesis of sugar fatty acid esters has been studied extensively, their 

functionality as emulsifiers in the basic oil-in-water systems has not been looked in-depth. 

Glucose is a cheap carbohydrate with only one primary hydroxyl group, therefore, the high 

selectivity is expected. Also, not many research (Arcos, Bernabe, & Otero, 1998; Degn, 

Pedersen, & Zimmermann, 1999; Ljunger, Adlercreutz, & Mattiasson, 1994) studied the 

synthesis condition and their functionalities. The objectives of this study are to: 1) optimize the 

synthesis of glucose esters with respect to substrate ratio and fatty acid types, and 2) evaluate the 

functionality of glucose esters as emulsifiers and compare with commercial sucrose esters with 

different HLB values.  

3.3. Materials and Methods 

3.3.1 Reagents 

DMSO, 2M2B, D-glucose, HPLC-grade methanol, and molecular sieves (3Å) were 

purchased from Fisher Scientific (Fair Lawn, NJ). Palmitic acid (98%), lauric acid (>98%), 

hexanoic acid (>99.5%), and immobilized lipase from Candida Antarctica were purchased from 

Sigma-Aldrich (St. Louis, MO). Pure canola oil was purchased from a local grocery store. 

Commercial sucrose esters SP30 (sucrose distearate, HLB 6, monoester content 30%), SP50 

(sucrose stearate, HLB 11, monoester content 50%), PS750 (sucrose palmitate, HLB 16, 

monoester content 75%) were donated. 

3.3.2 Synthesis of glucose esters 

The lipase-catalyzed synthesis of glucose esters was carried out in 50-mL Erlenmeyer 

flasks following published method with some modifications  (Ferrer, Cruces, Bernabe, 
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Ballesteros, & Plou, 1999). Palmitic acid, lauric acid, and hexanoic acid were used as acyl donor 

and glucose was used as acyl acceptor for esterification reactions. Molar ratios of fatty acid and 

sugar were 0.3 mM: 0.1 mM, 0.2 mM: 0.1 mM, 0.1 mM: 0.1 mM, and 0.1 mM: 0.3 mM.  One g 

molecular sieves and 0.25 g immobilized lipases were added in 10 mL solvent mix (80% DMSO 

and 20% 2M2B). The flasks were incubated at 55°C in a water bath with shaking at 96 rpm for 

48 h.  

After 48 h of reaction, reactants were centrifuged to obtain the supernatant. The 

supernatants were placed under a fume hood overnight to evaporate 2M2B. Water 

(approximately 10:1 v/v of solvent) was added to the medium to precipitate the fatty acid residue 

and esters. The viscous white slurry were filtered to obtain white solid. The solids were washed 

with 10 volumes of methanol for 3-4 times to dissolve free fatty acid residue and obtain highly 

pure esters. The purity of glucose esters was determined with NMR 1D proton test to obtain the 

area ratio of proton of α carbon (-CH2-COOH) of bonded fatty acid and free fatty acid.  

3.3.3 Quantitation of fatty acid conversion 

The quantitation of fatty acids by HPLC method followed a previous study (Reyes-

Duarte, López-Cortés, Ferrer, Plou, & Ballesteros, 2005) with slight modification. At 12th , 24th , 

36th  and 48th  h, aliquots of reactant mix were withdrawn and measured for residual free fatty 

acid by high performance liquid chromatography (Thermo Scientific, ACCELA 1250 HPLC) 

using a C18 column (Hypersil Gold, 50×2.1 mm, 1.9 µm), a PDA detector (at 200 nm), and 

EZChrom Elite software (Agilent, Version3.2.1). For palmitate acid detection, methanol: water 

70/30 (v/v) with 0.1% v/v acetic acid was used as mobile phase A for the first 2 min, then a 

gradient from this eluent to pure methanol (B) was continued for 5 min, after which the gradient 

was changed back to the original mobile phase for 5 min. The flow rate was 0.5 mL/min and the 
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temperature was 45°C. The method to detect lauric acid was the same as it was for palmitic acid. 

For hexanoic acid detection, the mobile phase A was methanol: water 80/20 (v/v) with 0.1% 

acetic acid for 4 min, then a gradient to pure methanol was last for 5min, then it changed back to 

A. The flow rate of mobile phase was 0.5 mL/min for all fatty acids. The conversion of fatty acid 

was calculated as:  

Conversion of fatty acid = (X0-X1)/X0’ × 100%  

X0- fatty acid concentration at the start of reaction 

X1-residual fatty acid concentration in reaction mix at different time points. 

X0’- theoretical concentration of fatty acid that can be fully converted to ester.  

From stoichiometry of reaction systems, X0’ is the 1/3 of initial concentration at 3:1 acid: 

sugar ratio, and 1/2 of initial concentration for 2:1 ratio.  

3.3.4 Identification of esters 

Agilent Quadrupole Time-of-Flight (QTOF) 6540 liquid chromatography mass 

spectrometry (LC/MS) was used to identify reaction products. A XDB C18 column (4.6×50 mm, 

1.8 µm) and an electrospray ionization detector were used. The products were scanned in the 

negative mode from 100-1000 Daltons. A gradient from 95% mobile phase A (water, 100%) and 

5% B (methanol, 100%) to 95% B and 5% A was applied for 20 min and kept for another 5 min. 

The flow rate of mobile phase was 0.8 mL/min. Nuclear magnetic resonance (NMR) (Bruker 

Avance III 600, Billerica, MA and Karlsruhe, Germany) was used to confirm the formation of 

ester bonds and chemical shifts of important carbon and hydrogen atoms. The products were 

dissolved in deuterated DMSO to achieve a concentration range of 50-800 mg/mL. 

Heteronuclear single quantum coherence (HSQC) and heteronuclear multiple bond correlation 
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(HMBC) spectroscopy for 1H and 13C were used to determine the ester bond formation. The 

data were analyzed with the TopSpin software (Bruker, Billerica, MA). 

 Chemical shifts, splitting patterns, J-coupling and positions of hydrogen and carbon for 

reactants and products are as follows:  

Glucose, the spectrum showed it was a mixture of α- and β-anomers.1H NMR (600 MHz, 

DMSO-d6) δ 4.91 (t, J = 4.2 Hz, 1H, H-1), 3.42 (dt, J = 9.1, 4.3 Hz, 1H, H-2), 3.11 (ddd, J = 

10.0, 6.7, 3.6 Hz, 1H, H-3), 3.04 (td, J = 9.3, 5.4 Hz, 1H, H-4), 3.58 – 3.52 (m, 1H, H-5), 3.48 – 

3.44 (m, 1H, H-6a), 3.60 (dd, J = 11.5, 5.9 Hz, 1H, H-6b). 13C NMR (151 MHz, DMSO-d6) δ 

92.67 (C-1), 72.809 (C-2), 73.541 (C-3), 71.03 (C-4), 72.403 (C-5), 61.676 (C-6). 

 

Palmitic acid. 1H NMR (600 MHz, DMSO-d6) δ 11.93 (s, 1H, -COOH), 2.166 (t, J = 7.5 

Hz, 2H, -CH2CO-), 1.486 (t, J = 7.2 Hz, 2H, -CH2-CH2-CO-), 1.205-1.294 (s, 24H, chain), 0.853 

(m, 3H, -CH3). 13C NMR (151 MHz, DMSO-d6) δ 174.75 (C=O), 34.119 (-CH2-CO-), 31.87 (-

CH2-CH2-CO-) , 29.661-29.661, 29.31, 29.16, 24.997, 22.617 (-CH2- palmitic acid backbone), 

14.263 (-CH3). 

 

Lauric acid. 1H NMR (600 MHz, DMSO-d6) δ 11.95 (s, 1H, -COOH), 2.176 (t, J = 7.5 

Hz, 2H, -CH2-CO-), 1.495 (t, J = 7.4 Hz, 2H, -CH2-CH2-CO-), 1.244-1.297 (s, 16H, chain), 0.86 

(d, J = 7.5 Hz, 3H, -CH3). 13C NMR (151 MHz, DMSO-d6) δ 174.85 (C=O), 34.12 (-CH2-CO-), 

31.816, 29.541, 29.528, 29.449, 29.285, 29.243, 29.079, 24.979, 22.597 (-CH2- lauric acid 

backbone), 14.344 (-CH3). 
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Hexanoic acid. 1H NMR (600 MHz, DMSO-d6) δ 11.889 (s, 1H, -COOH), 2.172 (t, J = 

7.6 Hz, 2H, -CH2CO-), 1.502-1.264 (6H, chain), 0.859 (t, J = 7.1 Hz, 3H, -CH3). 13C NMR (151 

MHz, DMSO-d6) δ 174.86 (C=O), 34.05 (-CH2-CO-), 31.25, 24.64 , 22.31 (-CH2- hexanoic acid 

backbone), 14.16 (-CH3). 

 

6-O-Palmitoylglucopyranose. 1H NMR (600 MHz, DMSO-d6) δ 4.91 (t, J = 4.4 Hz, 1H, 

H-1), 3.137 (m, 1H, H-2), 3.44 (td, J = 9.1, 4.5 Hz, 1H, H-3), 3.042 (td, J = 9.3, 5.5 Hz, 1H, H-

4), 3.78 (dd, J = 9.5, 6.5 Hz, 1H, H-5), 4.28 (d, J = 11.5 Hz, 1H, H-6a), 4.00 (dd, J = 11.7, 6.2 

Hz, 1H, H-6b), 2.28 (t, J = 7.4 Hz, 2H, -CH2-CO-), 1.51 (q, J = 7.2 Hz, 2H, -CH2-CH2-CO-), 

1.25 (s, 24H, chain), 0.87 (t, J = 6.9 Hz, 3H, -CH3). 13C NMR (151 MHz, DMSO-d6) δ 92.755 

(C-1), 72.66 (C-2), 73.336 (C-3), 71.035 (C-4), 69.601 (C-5), 64.355 (C-6), 173.363 (C=O), 

33.906 (-CH2-CO-), 31.778 (-CH2-CH2-CO-), 29.534 – 28.931, 24.94, 22.569 (-CH2- palmitoyl 

backbone), 14.341 (-CH3).  

 

6-O-Lauroylglucopyranose. 1H NMR (600 MHz, DMSO-d6) δ 4.909 (d, J = 4.7 Hz, 1H, 

H-1), 3.137 (m, 1H, H-2), 3.439 (td, J = 9.2, 4.3 Hz, 1H, H-3), 3.043 (m, 1H, H-4), 3.774 (dd, J 

= 9.7, 6.8 Hz, 1H, H-5), 4.277 (d, J = 11.9 Hz, 1H, H-6a), 4.006 (dd, J = 11.7, 6.2 Hz, 1H, H-

6b), 2.28 (t, J = 7.3 Hz, 2H, -CH2-CO-), 1.52 (t, J = 7.1 Hz, 2H, -CH2-CH2-CO-), 1.25 (s, 16H, 

chain), 0.87 (t, J = 6.8 Hz, 3H, -CH3). 13C NMR (151 MHz, DMSO-d6) δ  92.754 (C-1), 72.659 

(C-2) , 73.334 (C-3) , 71.027 (C-4) , 69.602 (C-5) , 64.362 (C-6), 173.272 (C=O), 33.909 (-CH2-

CO-) , 31.814 , 29.541 , 29.526 , 29.434, 29.268, 29.24, 28.964, 24.94, 22.592 (-CH2- lauroyl 

backbone), 14.42 (-CH3). 
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6-O-Hexanoylglucopyranose  

1H NMR (600 MHz, DMSO-d6) δ 4.911 (d, J = 3.9 Hz, 1H, H-1), 3.132 (m, 1H, H-2), 

3.43 (m, 1H, H-3), 3.055 (dd, J = 17.2, 7.4 Hz, 1H, H-4), 3.771 (s, 1H, H-5), 4.29 (dd, J = 19.7, 

11.6 Hz, 1H, H-6a), 3.997 (m, 1H, H-6b), 2.293, 1.51 (dt, J = 14.7, 7.9 Hz, 2H, -CH2-CO-), 

1.576-1.191 (m, 6H, caproyl backbone), 0.873 (d, J = 8.3 Hz, 3H, -CH3). 13C NMR (151 MHz, 

DMSO-d6) δ 173.444 (C=O), 34.177 (-CH2-CO-), 31.097, 24.643, 22.287 (-CH2- hexanoyl 

backcone). 

 

3.3.5 Initial sugar solubility 

Initial sugar solubility of ester was tested using an HPLC. After mixing reactants except 

lipase in the solvents as described in synthesis method above, flasks were incubated in the water 

bath at 55°C at 3.8 rpm for 30 min. After cooling down, aliquots from each flask were run 

through HPLC. A carbohydrate column (HyperRez XP Carbohydrate H+, 300×7.7 mm, 8 μm), a 

guard column (HyperRez XP Carbohydrate H+, 50×7.7 mm, 8 μm) and a RI detector were used 

The temperature for guard column and carbohydrate column were 65°C and 70°C, the flow rate 

was 0.4 mL/min.  

3.3.6 Emulsion stability Index 

0.01% w/w, 0.1% w/w and 0.5 % w/w 100g ester solutions were prepared and mixed 

with 10g canola oil, control treatment did not contain any esters. The mixtures were sonicated for 

10 min to improve ester dispersion. The mixture was homogenized for 2 min at 15,000 rpm using 

a blender (Bamix Type M 150) and 10 μL- 20 μL aliquots of emulsion were diluted with 2 mL 

deionized water in the spectrophotometer cuvette.  Absorbance of emulsion at 500 nm was 

measured at 0, and 20 min. The emulsion stability index (ESI) was calculated as: 
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ESI=A0*20/[A0-A20]. A0 and A20 were the absorbance obtained at 0 min and 20 min (Pearce & 

Kinsella, 1978). The higher ESI values indicated higher emulsion stability. 

3.3.7 Emulsion droplet size distribution  

The emulsion droplet size and distribution was measured by Malvern Particle Size 

analyzer (Mastersizer Hydro 2000). Emulsions with 0.5% w/w level of esters were prepared as 

above and were introduced into the instrument until a laser obscuration of 10-20% was achieved. 

Measurements were taken at time 0 h, 6th h, 24th h, 3rd d and 7th d. 

3.3.8 Contact angle measurement 

Contact angel measurement followed a previous research (Crowley, Desautel, Gazi, 

Kelly, Huppertz, & O’Mahony, 2015). Pellets of each of the esters were prepared with 0.08g 

powdered ester, placing them on a 13 mm pellet die and pressing under a force of 5000 kg for 2 

min in Carver Press (model 3619, Carver Inc, Wabash, IN). Contact angle measurement was 

conducted using a goniometer (Rame-Hart Model 250 Standard Goniometer). Approximately 4 

μL water droplet was dispensed on the pellet’s surface placed on a stage. Side view pictures were 

taken immediately after the water droplet left the syringe tip using a high-resolution camera.    

3.3.9 Statistical analysis 

Statistic test was conducted using SAS 9.4 software (SAS Institute Inc., Cary, NC). Proc 

GLIMMIX test was used to determine significant difference between treatments (P<0.05). At 

least three observations for each treatment were measured for conversion, sugar solubility, 

contact angel, emulsion stability and droplet size analysis. 

3.4. Results and Discussion 

3.4.1 Fatty acid conversion 
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Figure 3.1 (a), (b) and (c) show the conversion percentages of palmitic acid, lauric acid 

and hexanoic acid over 48 h, respectively. The fatty acid/glucose molar ratios were compared for 

optimum ratio for the highest conversion. For each glucose-fatty acid ester studied, the highest 

conversion of fatty acid was achieved when the ratio was 3:1 (97.17%, 76.57%, 113.11% for 

glucose palmitate, laurate and hexanoate, respectively). The second highest conversions were at 

the ratio of 2:1 (75.96%, 62.82%, 73.66%, respectively). The 1:1 and 1:3 ratios did not have any 

significantly differences; the conversion was around 50%, 40%, 30%, respectively for palmitic 

acid, lauric acid and hexanoic acid.  Higher concentrations of FA favored formation of the 

products as explained by the equilibrium constant: 

 k= [ester][water]/[fatty acid][glucose]    (Equation 1);   

or, [ester] = k×[fatty acid][glucose]/[water]    (Equation 2).  

At a given temperature (55°C in this study), k is a constant.  At higher molar ratios of 

fatty acid to glucose (2:1 or 3:1), the limiting reactant is glucose, thus, only 1/3rd of available 

fatty acid is converted to ester and water.  Therefore, the increase in fatty acid concentration in 

reaction mix would be larger than the increase in water amount. Meanwhile, the glucose 

concentration remained at a similar level compared to the reaction when the ratio was 1:1. 

Therefore, the increase of fatty acids amount increased the ester amount according to Equation 2, 

as reflected by the conversion percentage. For the reactants ratio of 1:1 and 1:3 of fatty acid to 

glucose, glucose solubility was limited in the medium as glucose crystals could be seen 

throughout the reaction, and fatty acid were completely dissolved. For these conditions, terms in 

Equation 2 did not have significant changes, indicating similar conversions for these two ratios. 

Among various fatty acids, the hexanoic acid had the highest conversion percentage at 3:1 ratio 

(113%). This could be due to the formation of diesters, along with monoesters, but at low levels 
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since they were not detected by LCMS and NMR. Two reasons could contribute to the higher 

conversion of hexanoic acid: shorter carbon chains making the solvent more polar resulting in 

higher glucose solubility (data will be shown in later section) than other two fatty acids, and 

possible stearic hindrance- the smaller molecule would have easier access to enzyme active sites 

and result in more esterification. 

3.4.2 Initial substrate concentration and initial conversion rates 

Influence of reactant concentrations on the initial conversion rates (linear range for first 

three hours) is presented in Table 3.1. For the molar ratios of 3:1, 2:1, 1:1 (fatty acid/glucose) in 

esterification of palmitic acid and lauric acid, fatty acids were completely soluble in solvent, so, 

the fatty acids concentration increased as molar ratio increased leading to higher initial fatty acid 

conversion rates. For molar ratio increase from 1:1 to 3:1 (fatty acid concentration increase from 

74.3 mM to 243.7 mM), the initial conversion rates also increased threefold from 3.3 μmol/(min ∙ 

g) to 9.6 μmol/(min ∙ g). Glucose did not completely solubilize for these molar ratios of 1:1 and 

1:3 (fatty acid/glucose), because sugar crystals were seen in the medium, thus we examined the 

soluble glucose concentration in reactant. For fatty acid: glucose molar ratios of 1:1 and 1:3 with 

increase in glucose concentration from 21 mM to 28.2 mM, the initial conversion rates increased 

from 3.3 μmol/(min ∙ g) to 5.2 μmol/(min ∙ g). From these two comparisons, it is seen that the 

concentration of both fatty acid and glucose had direct and proportional relationship with the 

initial conversion rate, indicating the reaction to be a first-order reaction in terms of either fatty 

acid or glucose (Degn & Zimmermann, 2001). For hexanoic acid, the increase of fatty acid 

concentration from 146.5 mM to 235.2 mM almost quadrupled the rate (Table 3.1), and the 

glucose solubility did not change over the three ratios and did not affect the initial rate. The 

highest conversion rate obtained was 11.83 μmol/(min∙g), which is similar to reported 15.2 
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μmol/(min∙g) for synthesis of glucose myristate (Degn & Zimmermann, 2001)  that was 

conducted in t-butanol: pyridine system. Although the glucose solubility was higher in our 

system, the deactivation of lipase in DMSO is stronger than pyridine. They reported that below 

molar ratio of 10:1 up to 20 mg/mL soluble glucose concentration, the initial reaction rate 

increased as the ratio increased, which was consistent with our study when we kept the sugar 

level constant. The effect of lauric acid and glucose concentration on initial conversion rates in 

the single solvent 2M2B was reported to increase when either of the two substrate concentrations 

increased, however, lauric acid was saturated at 140 mM, glucose was not saturated up to 50 mM 

(Flores, Naraghi, Engasser, & Halling, 2002). In our study, we did not find saturation levels for 

both substrates even at much higher fatty acid concentration of 259.6 mM. The reason for the 

difference in solubility could be that our bi-solvent system dissolved more fatty acids boosting 

the initial rates.  

Initial sugar solubility can also be associated with medium hydrophobicity (Pedersen, 

Wimmer, Emmersen, Degn, & Pedersen, 2002; Reyes-Duarte, López-Cortés, Ferrer, Plou, & 

Ballesteros, 2005). Glucose solubility increased as the chain length of the fatty acid decreased at 

each substrate ratio.  The solubility is also associated with the amount of sugar that was put into 

the medium, as it increased when the ratio of sugar increased, since they themselves created a 

more polar environment. Though not measured in our study, previous studies indicated as the 

esters were being produced, glucose solubility would increase through hydrophobic interaction 

(Degn & Zimmermann, 2001; Tsavas, et al., 2002).  

The initial conversion rates may or may not relate to the length of the acyl donor, as 

variously reported. Some studies reported the reaction rate with was faster for shorter chain 

length of fatty acid (C4-C12) that were esterified with disaccharide (Pedersen, Wimmer, 
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Emmersen, Degn, & Pedersen, 2002). Adelhorst, Bjokling, Godtfredsen and Kirk (1990) 

reported the enzyme showed faster reaction with longer fatty acids (C12-C18) than shorter acids 

(C8-C10) in solvent free condition. However, Degn, Pedersen, & Zimmermann, (1999) found 

that the initial reaction rate was independent within chain length C2-C20 of acyl donors for 

glucose. Our study also indicates that the initial rates and chain length were independent. The 

difference could be due to the difference in substrate and reaction conditions. 

3.4.3 Product identification and complete 1H and 13C assignment for reactants and products. 

The formation of glucose palmitate, glucose laurate and glucose hexanoate were 

confirmed by LCMS (data not shown) and NMR techniques. In the HMBC graph (Figure 3.2) of 

reaction mixture of glucose and palmitic acid, the sixth protons (4.01 and 4.27 ppm) of glucose 

were seen to have interacted with carbonyl carbon indicating the formation of ester bonds. The 

chemical shifts of H-6 of glucose and α-carbon proton of fatty acid in the esters to the higher 

fields indicated the chemical environment change due to esterification that caused de-shielding 

effect (Kitagawa, Tokiwa, Fan, Raku, & Tokiwa, 2000; Pedersen, Wimmer, Emmersen, Degn, & 

Pedersen, 2002; Walsh, Bombyk, Wagh, Bingham, & Berreau, 2009). We had two chemical 

shifts for the sixth proton in glucose indicating the alpha and beta conformation of the D-glucose 

(Roslund, Tähtinen, Niemitz, & Sjöholm, 2008). Similar NMR graph for glucose laurate and 

glucose hexanoate esters were obtained.  

We successfully obtained the purity of 95.50%, 98.97% of glucose palmitate and glucose 

laurate, respectively. Due to relatively high solubility of glucose hexanoate in both hydrophobic 

and hydrophilic environment, it was not possible to purify the ester by solvent extraction. NMR 

data for glucose heanoate was obtained from reaction mixture rather than pure product. 

3.4.4 Contact angle on product surface 
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Due to the low solubility of glucose palmitate in water, it was hard to measure the critical 

micelle concentration and surface tension; therefore, contact angle was measured for the esters to 

compare the relative hydrophobicity. The hydrophobicity is generally positively related to 

contact angle (Daffonchio, Thaveesri, & Verstraete, 1995) and reversely related to HLB value 

(Griffin, 1949). The contact angles and HLB values for glucose palmitate, glucose laurate, SP30, 

SP50 and PS750 were 98.6 (HLB 8.6), 93.6 (HLB 9.9), 76.9 (HLB 6), 44.8 (HLB 11) and 28.1 

(HLB 16) respectively. The contact angles of our products followed the trend: the longer alkyl 

chain of palmitic acid made glucose palmitate more hydrophobic.  The HLB values for these two 

products were calculated respectively according to the method of Griffin (1955). The HLB value 

indicates that both of the esters can perform as emulsifiers and wetting agents for oil-in-water 

system (value from 7-18, according to Griffin (1946)). Commercial SP50 and PS750 esters may 

have more function in detergent and solubilizing application because they had higher HLB value 

(Griffin, 1949). Overall, the larger the contact angle the ester had, the lower the HLB value they 

were, except that SP30 had lower HLB value than glucose palmitate but it had lower contact 

angle than the other. 

3.4.5 Emulsion stability of esters 

The emulsion stability index (ESI) for esters are shown in Figure 3.3. Glucose esters were 

not water-soluble and they stayed on top of aqueous phase; whereas, sucrose esters were 

dispersible but not soluble. Glucose esters demonstrated stabilizing effect compared to control 

treatment. The ESI increased as the concentration increased for all esters, which indicated lower 

concentrations of esters did not completely cover the oil surface to prevent creaming, the 

addition of more esters covered more surface area so the creaming process were retarded. At low 
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concentrations of 0.01% for glucose palmitate and glucose laurate, the ESI values (171.4, 178.0 

respectively) were slightly higher than control treatment (138.8). At medium concentration of 

0.1%, glucose palmitate ESI (315.3) was twice as much as control, whereas glucose laurate ESI 

(163.4) did not increase compared to 0.01%. At 0.5%, glucose palmitate again showed stronger 

stabilizing effect (ESI 664.7) than glucose laurate (460.8). These data show that glucose 

palmitate had better stabilizing effect compared to glucose laurate. One reason for this could be 

the stronger hydrophobic interactions by longer alkyl chains in the molecule with each other and 

with oil droplets, which can form a more compact structure than glucose laurate (Ferrer, 

Comelles, Plou, Cruces, Fuentes, Parra, et al., 2002).  

For commercial sucrose esters, similarly, the ESI increased as the concentration 

increased. Compared with glucose esters, the sucrose esters had better stabilizing effect since the 

ESI were higher than those of in-house glucose esters at every concentration. Particularly, at 

0.5%, the ESI were significantly higher (1351.8, 1212.5, 1492.3 for SP30, SP50, PS750 

respectively) than glucose esters.  

3.4.6 Emulsion droplet size distributions 

Droplet distribution and diameter parameters for control, glucose palmitate, glucose 

laurate, and sucrose esters SP30 are presented in Figure 3.4 and Table 3.2 respectively. It was 

obvious for control and glucose esters that the distribution had undergone from single-modal to 

bio-modal or tri-modal change during 7-day storage, indicating the size were diverging into 

bigger or smaller. The appearance of the peaks to the right side of the distribution indicated the 

presence of droplets that have not been completely covered by the surfactants have experienced 

coalescence (McClement, 2004a). The sucrose esters emulsified systems were relatively stable as 
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the distributions were bio-modal or tri-modal throughout. Only one for the sucrose esters is 

presented because the distribution of the patterns were similar.    

 Mean and standard deviation of the droplet diameters for each treatment for 7-day time 

points are reported in Table 3.2; for multiple comparison, data were transformed to a natural log 

scale to fit the normal distribution. For all the diameters, both fixed effects (type of esters and 

time) had significant effects on change in droplet diameters (P<0.05). The interaction of 

treatment and time was also significant (P<0.05), meaning the diameters changed differently 

among all the treatments at different times.  From 0 h to 7th day, D[0.1] decreased gradually for 

control (5.2 μm to 2.0 μm), glucose palmitate (1.7 μm to 0.3 μm) and glucose laurate-stabilized 

emulsions (2.0 μm to 0.3 μm), respectively; multiple comparison of log-transformed data 

indicated that the change was significant (P<0.05). However, droplet size almost did not change 

for sucrose esters. This indicated that smaller droplets were decreasing in control and glucose 

esters and were undergoing coalescence. This can be confirmed by D[0.9] and volume mean 

diameter D[4,3] that the size of droplets for these three esters were increasing. However, they 

increased differently – for the volume mean diameter, control group experienced the greatest 

change (from 37.2-74.7 μm), glucose palmitate stabilized droplet changed from 18.2 um to 32.7 

um, glucose laurate stabilized droplet changed from 16.6 um to 47.4 um. This indicated that 

glucose palmitate and glucose laurate generated smaller droplets overall and they had stabilizing 

effect on droplet size, but could not completely prevent coalescence. Compared with glucose 

laurate, glucose palmitate is relatively more effective in stabilizing the oil-in-water emulsions. 

The commercial sucrose esters can effectively prevent coalescence, as indicated by no significant 

changes for diameter parameters over time. Three mechanisms can explain the phenomenon we 

observed:  hydrophobic interaction (Ferrer, et al., 2002), steric stabilization (Nilsson & 
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Bergenståhl, 2007) and adsorption on the interfacial surface (McClement, 2004b). Between 

glucose palmitate and glucose laurate, the former has longer alkyl chain, likely with the stronger 

hydrophobic interaction with oil droplets resulting in larger area coverage on the droplet to 

prevent coalescence. Also, the bigger molecule of glucose palmitate has stronger steric hindrance 

that prevent droplet from aggregating.  For sucrose esters, both steric hindrance and adsorption 

contribute to the better stabilization effect. Sucrose esters has bigger size because the presence of 

a fructose moiety in addition to glucose, meanwhile the presence of more hydroxyl group made it 

easier to solubilize in the continuous phase and easier to adsorb at the interface, whereas glucose 

esters had much lower solubility in the continuous phase, their adsorption at the interface were 

much slower. 

3.5 Conclusion 

Glucose-fatty acid monoesters were successfully synthesized in tert-amyl butanol and 

DMSO mixture solvent system in lipase catalyzed reactions with high level of conversion. 

Products were purified with solvent extraction. Synthesized and commercial esters were 

compared for emulsion capabilities. Glucose esters stabilized oil droplets to some extent, but 

could not completely prevent coalescence compared to commercial sucrose esters. The relatively 

smaller sizes of glucose esters and low aqueous solubility can explain their difference of 

emulsifying property.  
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Fig 3.1 Conversion percentage of palmitic acid (a), lauric acid (b) and hexanoic acid (c) during 48 h. 
Lines with diamond, square, triangle and cross represents molar ratio of 3:1, 2:1, 1:1 and 1:3 of fatty 
acid/glucose respectively. Standard deviations are shown.  
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Fig 3.2 Heteronuclear multiple bond correlation (HMBC) of reaction mixture of palmitic acid (PA) and 
glucose. The horizontal and vertical axis indicate 1H proton and 13C chemical shift (ppm) respectively. 
The interaction of proton of C6 of glucose ring with the carbonyl carbon demonstrated ester bond has 
been formed. The ester bond also caused the α-carbon (the one next to the carbonyl carbon) chemical shift 
to the higher field. 
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Fig 3.3 Emulsion stability index of glucose esters and sucrose esters. Mean value and standard deviation are shown. 
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d 

Fig 3.4 Droplet size distribution of emulsions of control treatment (a), glucose palmitate (b), glucose 
laurate (c), sucrose ester SP30 (d) at 0 h, 6th h, 24th h, 3rd day, 7th day.  
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Table 3.1 Initial reaction rate (μmol/min*g) and substrate solubility (mM) 

Ratio of 
fatty 

acid/glucose 

PA initial 
conversion rate 

(μmol/(min ∙ 
g)) 

Initial 
sugar 

solubility 
(mM) 

PA 
concentration 

(mM) 

LA initial 
conversion rate 

(μmol/(min ∙ 
g)) 

Initial 
sugar 

solubility 
(mM) 

LA 
concentration 

(mM) 

HA initial 
conversion rate 

(μmol/(min  
∙g)) 

Initial sugar 
solubility(mM) 

HA 
concentration 

(mM) 

3:1 9.6 a 16.9 c 243.7 a 7.2 a 21.1 b 259.6 a 11.8 a    26.2 a 235.2 a 

2:1 4.8 b 18.3 bc 158.0 b 5.3 a 22.5 b 178.3 b 3.8 b 22.8 a 146.5 b 

1:1 3.3 b 21.0 b 74.3 c 2.2 b 21.6 b 103.8 c 2.3 b 28.1 a 75.5 c 

1:3 5.2 ab 28.2 a 72.9 c 2.6 b 33.6 a 103.6 c 2.7 b 30.5 a 74.4 c 

PA- palmitic acid, LA- lauric acid, HA- hexanoic acid. Different letters indicate significantly difference in a row (P<0.05).  
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Table 3.2 Diameter summary of droplet size distribution 

 

 

Mean value and standard deviation of diameters are shown in the table. For data analysis, data were transformed to a log scale to fit a normal 
distribution.

  D[0.1] D[0.5] 
  0h 6h 24h 3d 7d 0h 6h 24h 3d 7d 
Control 5.2±1.2 1.2±0.3 1.2±0.1 2.3±1.2 2.0±2.0 26.8±4.6 10.4±6.5 58.0±28.3 65.5±41.9 17.1±2.2 
GP 1.7±0.1 0.6±0.1 0.6±0.0 0.4±0.1 0.3±0.0 6.6±0.5 2.4±0.1 2.5±0.1 2.8±0.3 2.6±0.8 
GL 2.0±0.3 0.4±0.1 0.4±0.1 0.4±0.0 0.3±0.0 9.8±0.8 2.4±0.3 2.6±1.0 5.9±4.2 3.1±1.2 
SP30 0.4±0.1 0.3±0.1 0.4±0.0 0.3±0.1 0.3±0.0 6.4±1.8 4.7±2.4 8.3±2.7 6.9±2.3 7.1±2.0 
SP50 0.3±0.1 0.3±0.0 0.3±0.0 0.2±0.0 0.3±0.1 5.4±0.8 2.8±1.4 4.3±2.1 2.1±1.4 4.5±2.8 
PS750 0.5±0.2 0.3±0.0 0.3±0.1 0.3±0.0 0.2±0.0 4.7±2.1 1.3±0.4 4.5±1.4 8.1±3.5 4.1±1.0 
           

  

 
 

D[0.9] D[4,3] 
  0h 6h 24h 3d 7d 0h 6h 24h 3d 7d 
Control 83.2±15.3 201.0±3.6 232.0±24.1 314.1±91.4 210.7±55.3 37.2±6.8 58.5±6.7 94.6±17.3 124.1±34.2 74.7±17.5 
GP 34.1±4.1 20.6±22.1 148.5±93.5 91.3±23.6 99.5±96.7 18.2±4.8 17.8±6.4 42.3±29.2 23.7±5.8 32.7±30.4 
GL 36.8±2.8 35.5±41.5 117.6±30.0 172.5±17.0 160.5±34.2 16.6±1.5 21.7±10.1 32.5±9.2 57.2±10.6 47.4±12.3 
SP30 23.2±4.0 26.1±5.6 30.9±4.8 24.0±6.6 25.9±3.1 8.1±1.6 5.2±3.3 6.9±2.0 5.5±5.0 6.4±5.9 
SP50 19.3±5.1 12.9±6.0 17.4±0.6 15.3±1.6 15.2±1.6 10.3±1.7 11.1±2.0 17.7±0.8 12.0±0.8 17.0±1.6 
PS750 24.4±7.6 22.5±6.8 29.8±3.1 64.1±57.2 34.5±10.1 10.1±4.8 6.6±2.4 10.7±1.0 21.9±17.9 12.9±3.9 
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